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Abstract. The following physical situation is investigated. A dielectric cylinder with a given
surface charge density is immersed in electrolite. The electrolite is treated via the two-
dimensional nonlinear Poisson–Boltzmann equation. In the case of single-line charge located
on the cylindrical surface, analytical expressions for the electric field as well as for the space
charge distribution in the electrolite are derived. The matter investigated here is related to the
problem of the structure of the electric potential emanating from DNA.

1. Introduction

The mathematical model presented here reveals a possibility to describe the structure of
the electric potential and field, and of the space charge distribution in a situation where
a dielectric cylinder with a given surface charge densityσ is immersed in an electrolite.
These investigations point to the problem of finding the structure of the electric potential
emanating from dissolved DNA and the charge distribution in surrounding electrolite.

The investigations presented in this paper are induced from [1, 2]. In these papers
DNA is treated as dielectric cylinder on the surface of which are distributed point charges
forming double helix. It is immersed in a dielectric media divided into two areas with
different dielectric constantsε1 andε2. The first one corresponds to the Manning cloud, the
second corresponds to the bulk solvent.

An important feature of this model is that the helical charge distribution is decomposed
into n vertical lines of charges. According to this, the investigation of the electric field in
the case when the surface charge consists of vertical lines would be useful.

Some other models treat the solvent with versions of either Debye–Hűckel or Poisson–
Boltzmann (PB) equations, but treat DNA as a continuous charge distribution with
cylindrical symmetry [3, 4]. In our model the electrolite outside the cylinder is treated
via the complete exponentially nonlinear two-dimensional PB equation. On the other hand,
it is shown that the structure of the charge on the surface of DNA might be considered.

The exponentially nonlinear PB equation may reveal some new properties of the system,
as we illustrated in other situations [5, 6], which remain obscure when the linearised version
is used. We consider the one-component PB equation assuming that near the cylinder mainly
the opposite charged ions, with respect toσ , are concentrated.

Analytical expressions for the electric potential and field inside and outside the cylinder
will be obtained in the case in which the surface of the cylinder a single-line charge is
located.
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2. The nonlinear PB equation and its solutions

The nonlinear homogeneous PB equation in polar coordinates is

∂29

∂ρ2
+ 1

ρ

∂9

∂ρ
+ 1

ρ2

∂29

∂ϕ2
= −4πqnN

ε
exp(−q9

kT
). (1)

The dimensionless form is obtained via the transformations

ρ̄ = ρf 8̄ = − q9

(kT )
(2)

or

∂28̄

∂ρ̄2
+ 1

ρ̄

∂8̄

∂ρ̄
+ 1

ρ̄2

∂28̄

∂ϕ2
= exp(8̄). (3)

Heref = ( 4πNn
ε
L)1/2 , whereL is the characteristic length defined by

L = q2/(kT ). (4)

Also n is the normalization factor given by

n−1 =
∫
Ve

e−q9/kT dv (5)

whereVe is the volume of the electrolite under consideration andN is the number of the
free ions with chargeq per unit axial length.

Introducing a new variable and function by

x = ln ρ̄ 8 = 8̄+ 2x

we obtain the equation

∂28

∂x2
+ ∂

28

∂ϕ2
= exp(8). (6)

The relation between the solutions of this equation and the solutions of the Laplace equation
was first mentioned by Liouville [7]. Using B̋acklund transformations the solution of (6)
can be expressed through arbitrary harmonic functions. Performing such procedure the
following real solution of (6) is obtained

8 = ln


2
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)2
+ 2
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)2
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 . (7)

HereU(x, ϕ) is a real arbitrary harmonic function. Consequently for the self-consistent
electric potential, which is a solution of the nonlinear PB equation, from (7) we have
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3. Boundary conditions and approach for solving the problem

The physical situation described below is the following. A dielectric cylinder with radiusb

and given surface charge densityσ(ϕ) is immersed in electrolite. We have the electrostatic
boundary-value problem, where outside the cylinder the electric potential is described by
the nonlinear PB equation and inside the cylinder by the Laplace equation. The boundary
conditions atρ = b are

(D2−D1) · ρ̂ = 4πσ(ϕ) (9)

(E2−E1)× ρ̂ = 0 (10)

whereε(ρ) is

ε(ρ) =
{
ε1 06 ρ < b

ε2 b 6 ρ 6 ρ0.
(11)

Here ρ̂ is the outward unit radial vector. The value ofρ0 will be determined after the
normalization of the solution of the PB equation. Here the indexes 1 and 2 refer to the
areas inside and outside the cylinder.

Also charge neutrality condition is imposed

Nq =
∫
S ′
σ(ϕ) ds (12)

whereS ′ is the boundary surface (ρ = b). We specialize to the concrete problem when on
the boundary surface (ρ = b) a single-line charge is located. In this geometry the position
of the charge is arbitrary, so we chose the boundary point (ρ = b, ϕ = 0). In this situation
σ(ϕ) has the form

σ(ϕ) = γ

b
δ(ϕ) (13)

or

σ(ϕ) = γ

πb

[
1

2
+
∞∑
m=1

cos(mϕ)

]
. (14)

Hereγ is the line charge density.
To solve this electrostatic boundary-value problem we shall use a similar technique

from [1, 2]. Using the representation of the Green function in polar coordinates we can
write down a general ansatz which solve the Laplace equation inside the cylinder (ρ < b)
[8]

91 =
∞∑
m=0

Ā1
m(ρ/b)

m cos(mϕ). (15)

The same ansatz might be used for the harmonic functionU(ρ̄, ϕ), which determines the
solution of PB equation. In the concrete problem investigated here the boundary conditions
(9)–(11) and the charge neutrality condition (12) can be satisfied by keeping just three
terms inU(ρ̄, ϕ). This important possibilty is due to the nonlinearity of the PB equation. It
leads to relatively simple expressions for the electric field and the space charge distribution
outside the cylinder. We set

U(ρ̄, ϕ) = C ln(ρ1ρ)+ (Ā/ρ̄ + B̄ρ̄) cosϕ. (16)
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In this situation from the boundary conditions we will obtain a finite system of equations
for the expansion coefficientsC, Ā, B̄, Ā1

1 andĀ1
2 together with a recurrent relation for the

other coefficientsĀ1
m. From (16) we obtain for the solution of the PB equation

92 = −kT
q

ln

{
2

[C + (−Ā/ρ̄ + B̄ρ̄) cosϕ]2+ [(Ā/ρ̄ + B̄ρ̄) sinϕ]2

ρ̄2[C ln(ρ1ρ)+ (Ā/ρ̄ + B̄ρ̄) cosϕ]2

}
. (17)

The boundary conditions can be rewritten in the form

1/ρ
∂91

∂ϕ
= 1/ρ

∂92

∂ϕ

∣∣∣∣
ρ=b

(18)

ε1
∂91

∂ρ
− ε2

∂92

∂ρ
= 4πσ(ϕ)|ρ=b. (19)

We introduce the relations

Ā1
m =

kT

q
A1
m (20)

and

Ā/(bf ) = A B̄(bf ) = B A+ B = A2
1 A2

0 = C ln(ρ1b). (21)

Using expressions (13), (15) and (17) forσ(ϕ), 91 and92 from the boundary conditions
(18) and (19) we obtain the following system of algebraic equations

A2
0A

1
1+ A2

1A
1
2 = 2A2

1 (22)

mA2
0A

m
1 + 1/2A2

1[(m− 1)A1
m−1+ (m+ 1)A1

m+1] = 0 (23)

ε1[A2
0A

1
1+ A2

1A
1
2] − 4ε2B = 4qγ

kT
(A2

0+ A2
1) (24)

ε1

2
A2

1A
1
1− 2ε2

[
A2

0

ln(ρ1b)
+ A2

0

]
= 2qγ

kT
(A2

0+ A2
1) (25)

mA2
0A

m
1 + 1/2A2

1[(m− 1)A1
m−1+ (m+ 1)A1

m+1] = 4qγ

kT
(A2

0+ A2
1). (26)

The system of equations (22)–(26) has the non-trivial solutions

A1
1 = 4ε2/ε1[1/ ln(ρ1b)+ 1] A1

2 = 2+ 4ε2/ε1[1/ ln(ρ1b)+ 1] (27)

A = B(2ε2/ε1− 1) A2
0 = C ln(ρ1b) = −2Bε2/ε1 (28)

mA1
m = 1/2[(m− 1)A1

m−1+ (m+ 1)A1
m+1]. (29)

The constantρ1 will be determined in the next section from the normalization condition
(5).

4. Structure of the electric potential and field and normalization of the solution

Expressions (27)–(29) determine the expansion coefficients and consequently the electric
potential and field inside and outside the cylinder. We will use the notations

α := ε2/ε1 β := 2ε2/ε1− 1 D := 2ε2/ε1

ln(ρ1b)
r := ρ/b. (30)

The self-consistent potential92, which is a solution of the PB equation forρ > b is

92 = −kT
q

ln

{
2

[D + (β/r − r) cosϕ]2+ [(β/r + r) sinϕ]2

b2f 2r2[−2α −D ln r + (β/r + r) cosϕ]2

}
. (31)
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From expression (31) for92 and the relationE2 = −grad92 for the componentsE2ρ

andE2ϕ of the electric field we obtain

E2ρ = kT

qb

{
4 cosϕ − 2[D + 2α +D ln r]/r

−2α −D ln r + (β/r + r) cosϕ

}
(32)

E2ϕ = − kT
qbr

{
2(β/r + r) sinϕ

−2α −D ln r + (β/r + r) cosϕ

}
. (33)

For the space charge distributionρsc outside the cylinder we obtain

ρsc = qnN exp

(
−q92

kT

)
= [D + (β/r − r) cosϕ]2+ [(β/r + r) sinϕ]2

b22πq
ε2kT

r2[−2α −D ln r + (β/r + r) cosϕ]2
. (34)

The denominator in expressions (31)–(34) is non-zero in the interval

16 r 6 r0 (35)

if r fulfils the inequality

2α +D ln r >
β

r
+ r. (36)

Condition (36) determines the area in which the solution of the PB equation does not
possess unphysical singularities and the value ofr0. Consequently theN opposite charged
ions are distributed in a finite area (r 6 r0). The value ofr0 depends onε1, ε2 and still
undetermined constantD. The value ofD can be obtained from the normalization condition
(5). According to (12) we demand charge neutrality or

Nq = γ. (37)

The both conditions (5) and (37) are fulfilled if∫
Ve

qnNe−q92/kT dv = γ. (38)

The normalization of the solution can be performed on any curver(ϕ), determiningVe,
such thatr(ϕ) 6 r0 for 0 6 ϕ 6 2π . This is in some sense a self-consistent procedure,
because the value ofD or r0 is determined after the integration in (38).

If we demand homogeneous space charge density at the upper boundary of the areaVe
we will obtain

qnNe−q92/kT = ρ0
sc = constant. (39)

Condition (39) gives an equation for the functionr(ϕ) determining this boundary

[D + (β/r − r) cosϕ]2+ [(β/r + r) sinϕ]2

= ρ0
sc

b22πq

ε2kT
r2[−2α −D ln r + (β/r + r) cosϕ]2. (40)

The constantD is determined again from (38).
The components of the electric fieldE1ρ and E2ρ inside the cylinder are obtained

by using the relationE1 = −grad91 and expressions (27) and (29) for the expansion
coefficients. So we obtain

E1ρ = −1/b
∞∑
m=1

mĀ1
mr

m−1 cos(mϕ) (41)

E1ϕ = 1/b
∞∑
m=1

mĀ1
mr

m−1 sin(mϕ). (42)
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For the expansion coefficients̄A1
m we have

Ā1
1 = 4

ε2

ε1
[(ln(ρ1b)

−1+ 1]kT /q (43)

Ā1
2 =

{
2+ 4

ε2

ε1
[(ln(ρ1b))

−1+ 1]

}
kT /q (44)

and

mĀ1
m = 1/2[(m− 1)Ā1

m−1+ (m+ 1)Ā1
m+1]. (45)

The constant ln(ρ1b) is determined after the normalization of the solution of the PB equation
(D = 2ε2

ε1
(ln(ρ1b))

−1) as it is explained above.

5. Conclusion

The mathematical model and results given above reveal a possibility to develop the model
of dissolved DNA presented in [1, 2] treating the surrounding electrolite via the nonlinear
PB equation. Considering the two-dimensional nonlinear PB equation is also a step
forward because the DNA is not treated as a homogeneous charged cylinder as in some
previous models [3, 4]. The mathematical model presented here is more general and can
be successfully applied in the cases when the surface charge density consists of several
vertical or non-vertical lines. Bearing this in mind the results will be made closer to the
real problem of DNA, by considering more complicated forms ofσ , which is the subject
of our future work.
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